
J Glob Optim (2010) 47:133–159
DOI 10.1007/s10898-009-9462-7

A new smoothing Newton-type algorithm for semi-infinite
programming

Chen Ling · Qin Ni · Liqun Qi · Soon-Yi Wu

Received: 12 July 2007 / Accepted: 23 July 2009 / Published online: 1 August 2009
© Springer Science+Business Media, LLC. 2009

Abstract We consider a semismooth reformulation of the KKT system arising from the
semi-infinite programming (SIP) problem. Based upon this reformulation, we present a new
smoothing Newton-type method for the solution of SIP problem. The main properties of this
method are: (a) it is globally convergent at least to a stationary point of the SIP problem, (b)
it is locally superlinearly convergent under a certain regularity condition, (c) the feasibility
is ensured via the aggregated constraint, and (d) it has to solve just one linear system of
equations at each iteration. Preliminary numerical results are reported.

Keywords Semi-infinite programming (SIP) problem · KKT system ·
Nonsmooth equations · Smoothing method · Convergence

Chen Ling work was supported by the National Natural Science Foundation of China (10871168), the
Zhejiang Provincial National Science Foundation of China (Y606168) and a Hong Kong Polytechnic
University Postdoctoral Fellowship. Qin Ni work was supported by the National Natural Science Foundation
of China (grant 10471062). Liqun Qi work was supported by the Hong Kong Research Grant Council (Grant
PolyU 102307) and a Chair Professor Fund of the Hong Kong Polytechnic University.

C. Ling
School of Mathematics and Statistics, Zhejiang University of Finance and Economics,
310018 Hangzhou, China
e-mail: linghz@hzcnc.com

Q. Ni
Department of Mathematics, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing, China
e-mail: niqfs@nuaa.edu.cn

C. Ling · L. Qi (B)
Department of Applied Mathematics, The Hong Kong Polytechnic University,
Hung Hom, Kowloon, Hong Kong
e-mail: maqilq@polyu.edu.hk

S.-Y. Wu
Department of Mathematics, National Cheng Kung University/National Center for Theoretical Sciences,
Tainan, Taiwan
e-mail: soonyi@mail.ncku.edu.tw

123

134 J Glob Optim (2010) 47:133–159

1 Introduction

We consider the following semi-infinite programming (SIP) problem:

min{ f (x) : x ∈ X}, (1.1)

where X = {x ∈ Rn : g(x, v) ≤ 0, ∀ v ∈ V }, V is a nonempty compact subset of Rm ,
defined by V = {v ∈ Rm : c(v) ≤ 0} , f : Rn → R and g : Rn × Rm → R and
c : Rm → Rq are twice continuously differentiable functions.

The SIP problem arises from various applications such as approximation theory, optimal
control, eigenvalue computation, mechanical stress of materials, pollution control and statis-
tical design. Therefore, the solution methods for SIP problems are very important. Since the
main difficulty for solving the SIP problem is that it has infinite constraints, the main effort
of existing methods is to reduce the infinite set V to a finite one. Many methods have been
proposed for the SIP problem, which can be roughly divided into three types: (1) discreti-
zation methods, (2) exchange methods, and (3) local reduction methods. We refer readers to
[2,4–10,13,15,20,27,31–33,36,37] for details.

Let

V (x) = {v ∈ V : g(x, v) = 0}.
It is well-known [29] that if x is a local minimizer of the SIP problem (1.1), and if the

extended Mangasarian–Fromovitz constraint qualification (EMFCQ) holds at x , i.e., there
exists a vector h ∈ Rn such that

∇x g(x, v)T h < 0

for all v ∈ V (x), then there are p positive numbers ui such that

∇ f (x) +
p∑

i=1

ui∇x g(x, vi) = 0,

where vi ∈ V (x) for i ∈ P := {1, 2, . . . , p} and p ≤ n. Hence, the KKT system of the SIP
problem (1.1) is as follows:

⎧
⎪⎪⎨

⎪⎪⎩

∇ f (x) +
p∑

i=1
ui∇x g(x, vi) = 0,

g(x, v) ≤ 0, ∀ v ∈ V,

ui > 0, g(x, vi) = 0, i ∈ P.

(1.2)

In the KKT system (1.2), x is called a stationary point of the SIP problem, and u ≡
(u1, . . . , u p) ∈ R p and vi for i ∈ P are called its Lagrange multiplier and attainers,
respectively.

Moreover, by the definition of V (x) and the second constrained condition of (1.2), vi ∈
V (x) (i ∈ P) imply that vi (i ∈ P) are global minimizers of the following minimization
problem:

min −g(x, v)

s.t. v ∈ V .
(1.3)

123

J Glob Optim (2010) 47:133–159 135

The KKT system of (1.3) can be written as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−∇vg(x, vi) +
q∑

j=1
wi

j∇c j (v
i) = 0,

wi
j ≥ 0, c j (v

i) ≤ 0,

wi
j c j (v

i) = 0, i ∈ P, j ∈ Q,

(1.4)

where wi ≡ (wi
1, . . . w

i
q) ∈ Rq , (i ∈ P) and Q := {1, . . . , q}. Thus, the system (1.2) and

vi ∈ V (x) (i ∈ P) are transformed into the following system:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ f (x) +
p∑

i=1
ui∇x g(x, vi) = 0,

g(x, v) ≤ 0, ∀ v ∈ V,

ui > 0, g(x, vi) = 0, i ∈ P,

−∇vg(x, vi) +
q∑

j=1
wi

j∇c j (v
i) = 0,

wi
j ≥ 0, c j (v

i) ≤ 0,

wi
j c j (v

i) = 0, i ∈ P, j ∈ Q.

(1.5)

It is then desirable to develop numerical methods on the basis of (1.5). However, we realize
that in order to possess the conditions for the CD-regularity required by our algorithm, we
need to modify the above system accordingly. The definition of the CD-regularity and the
conditions for CD-regularity will be presented in Sects. 2 and 5, respectively. Since ui > 0
for i ∈ P , we may multiply the fourth equation in (1.5) by ui and then further replace uiw

i
j

by wi
j for i ∈ P; j ∈ Q. Thus, in the case that ui > 0 for i ∈ P , the system (1.5) is

equivalent to the following:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ f (x) +
p∑

i=1
ui∇x g(x, vi) = 0,

g(x, v) ≤ 0, ∀ v ∈ V,

ui > 0, g(x, vi) = 0, i ∈ P,

−ui∇vg(x, vi) +
q∑

j=1
wi

j∇c j (v
i) = 0,

wi
j ≥ 0, c j (v

i) ≤ 0,

wi
j c j (v

i) = 0, i ∈ P, j ∈ Q.

(1.6)

Based on (1.6) except the feasibility constraints, a semismooth Newton method and a
smoothing Newton method were presented in [26] and [14], respectively. The advantage
of these two methods proposed in [14,26] is that in every iteration only a system of linear
equations needs to be solved. Moreover, these methods enjoy global and locally superlinear
convergence. However, these two methods cannot ensure the feasibility of (1.1). Recently,
another iterative method for solving the KKT system of (1.1) was proposed in [39], in which
the feasibility issue was considered. However, the method in [39] does not have locally super-
linear convergence property. Quite recently, based on the constrained equations reformulation
of the KKT system of the SIP problem with box parameter set V , two smoothing projected
Newton-type algorithms for SIP problem were presented in [18,22]. However, the accumu-
lation points of the sequences generated by those algorithms are not necessarily stationary
points of the SIP problem.

123

136 J Glob Optim (2010) 47:133–159

In this paper, we present a new method for solving the SIP problem by using a smooth-
ing Newton-type algorithm to solve (1.6). At each iteration only a system of linear equations
needs to be solved. The feasibility is ensured via the aggregated constraint. Global and locally
superlinear convergence of this method is established under some mild assumptions. Some
drawbacks of existing methods are overcome.

The rest of this paper is organized as follows. In Sect. 2, we reformulate the system (1.6)
into a system of semismooth equations by using an NCP function φ and an integral function
G. In Sect. 3, we study the properties of the smoothing functions Ḡ(·, ·) and φ̄(·, ·, ·) of G(·)
and φ(·, ·), respectively. In Sect. 4, a smoothing Newton-type algorithm is presented to solve
(1.6). This smoothing algorithm is a modified version of the methods presented in [12,24].
In Sect. 5 we establish the global and locally superlinear convergence of the new method.
In Sect. 6, we give our numerical results, which show that our new method performs well,
whenever the evaluation of the integral function is not very expensive. Specially, for the SIP
problem with higher dimension decision variable, the presented algorithm is hopeful. Some
comments are made in the last section.

Some words about the notation. For a smooth (continuously differentiable) function F :
Rn → Rm , we denote the Jacobian of F at x ∈ Rn by DF(x), which is an m × n matrix.
We denote the transposed Jacobian as ∇F(x). For a smooth function g : Rn × Rm → R,
we denote by ∇x g(x, y) the gradient of g at (x, y) with respect to x and by ∇2

xx g(x, y),
∇2

xy g(x, y) = Dy∇x g(x, y) and ∇2
yy g(x, y), the n ×n, n ×m and m ×m matrices of second

order partial derivatives of g at (x, y), respectively. For a nonsmooth function G(x), ∂G(x)

means the generalized Jacobian in the sense of Clarke [1]. If T is a finite set, we let |T |
denote its cardinality, that is the number of elements of T . For an m ×n matrix M , a subset I
of {1, 2, . . . , m} and a subset J of {1, 2, . . . , n}, we use the notation MIJ for the |I| × |J |
sub-matrix obtained by deleting all rows i �∈ I and all columns j �∈ J , and use the notation
MI· (M·J) for |I| × n (m × |J |) the sub-matrix obtained by deleting all rows i �∈ I (all
columns j �∈ J). ‖ · ‖ denotes the Euclidean norm. If δ is a small quantity, O(δ) and o(δ)

mean the same order and higher order small quantity respectively.

2 A semismooth equation reformulation

In this section, we reformulate the system (1.6) into a system of semismooth equations. We
first briefly review some concepts and results on semismoothness and NCP functions.

Let H : Rn → Rn be locally Lipschitzian continuous. In [21], Qi defined the B-subdif-
ferential of a locally Lipschitz function H at a point x ∈ Rn :

∂B H(x) =
{

Q ∈ Rn×n : Q = lim
xk→x

DH(xk), H is differentiable at xk for all k

}
.

Then the Clarke generalized Jacobian [1] of H at x is defined by

∂ H(x) = conv (∂B H(x)) .

A locally Lipschitz function H is said to be CD-regular at x ∈ Rn if all Q ∈ ∂ H(x) are
nonsingular.

Semismoothness was originally introduced by Mifflin [16] for functionals. In [25], Qi
and Sun extended the definition of semismooth functions to H : Rn → Rn . H is said to be
semismooth at x ∈ Rn , if

123

J Glob Optim (2010) 47:133–159 137

lim
Q∈∂ H(x+th′)

h′→h, t↓0

{Qh′}

exists for any h ∈ Rn . Semismoothness can also be defined equivalently as follows [25]:

Definition 2.1 Let H : Rn → Rn be a locally Lipschitz function. We say that H is semi-
smooth at x if

(i) H is directionally differentiable at x ; and
(ii) for any h → 0 and Q ∈ ∂ H(x + h),

H(x + h) − H(x) − Qh = o(||h||).
Here, o(‖h‖) stands for a vector function of h, satisfying

lim
h→0

o(‖h‖)
‖h‖ = 0.

A function H is said to be a semismooth function if it is semismooth everywhere on Rn .

Lemma 2.1 [21] Suppose that H : Rn → Rn is locally Lipschitz continuous and H is
CD-regular at x ∈ Rn. Then there exist a neighborhood N (x) of x and a constant C such
that for any y ∈ N (x) and Q ∈ ∂ H(y), Q is nonsingular and ||Q−1|| ≤ C.

Lemma 2.2 [19] Suppose that H : Rn → Rn is locally Lipschitz continuous and H is
CD-regular at a solution x∗ of H(x) = 0. If H is semismooth at x∗, then there exist a
neighborhood N (x∗) of x∗ and a constant C such that for any x ∈ N (x∗),

||H(x)|| ≥ C ||x − x∗||.
A function φ : R2 → R is called an NCP function if φ(a, b) = 0 if and only if a ≥ 0,

b ≥ 0 and ab = 0. Two well-known NCP functions are the minimum function

φmin(a, b) := min{a, b}
and the Fischer–Burmeister function

φF B(a, b) =
√

a2 + b2 − a − b. (2.1)

Both the minimum function and the Fischer–Burmeister function are not smooth, but they
are semismooth. Here and throughout this paper, we use the Fischer–Burmeister function.

Let

G(x) =
∫

V

[g(x, v)]+dv, (2.2)

where [x]+ = max{0, x}. The function G(x) was proposed to be used on SIP in [34]. It is
not difficult to show that G(x) ≥ 0 and G is nonsmooth but semismooth [23]. By the use of
the functions φ and G defined by (2.1) and (2.2), respectively, (1.6) is reformulated as the
following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ f (x) +
p∑

i=1
ui∇x g(x, vi) = 0,

G(x) + s = 0,

φ(ui ,−g(x, vi)) = 0,

−ui∇vg(x, vi) +
q∑

j=1
wi

j∇c j (v
i) = 0,

φ(wi
j ,−c j (v

i)) = 0, i ∈ P, j ∈ Q,

(2.3)

123

138 J Glob Optim (2010) 47:133–159

which can be written as the following system of semismooth equations:

H(s, z) :=
(

G(x) + s
P(z)

)
= 0, (2.4)

where

P(z) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∇ f (x) +
p∑

i=1
ui∇x g(x, vi)

φ(u1,−g(x, v1))
...

φ(u p,−g(x, v p))

−u1∇vg(x, v1) +
q∑

j=1
w1

j∇c j (v
1)

...

−u p∇vg(x, v p) +
q∑

j=1
w

p
j ∇c j (v

p)

φ(w1
1,−c1(v

1))
...

φ(w1
q ,−cq(v1))

...

φ(w
p
1 ,−c1(v

p))
...

φ(w
p
q ,−cq(v p))

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(s, z) = (s, x, u, v, w) ∈ R1+n+p(m+q+1), v = (v1, . . . , v p) ∈ R pm and w = (w1, . . . , w p)

∈ R pq . Note that s ∈ R is an artificial variable which ensures the numbers of the variables
in the system equal to the numbers of the equations. At the same time, we can write out the
expression of the element U in ∂ H(s, z) and see that the introduction of artificial variable s
can reduce the possible degeneration generated by the function G(x).

It is similar to that stated in [14], that if there is an 1 + n + (m + q + 1)p dimensional
vector satisfying (2.4) and s = 0, we may then drop the part indexed by i where ui = 0.
In this case, we get a solution of (1.6) which obviously satisfies (2.4). Hence, in this sense,
(1.6) is equivalent to (2.4). In Sect. 4, we will present an algorithm for solving the system of
nonsmooth equations (2.4).

3 Smoothing functions

The nonsmoothness of G and φ in (2.4) results in the difficulty of the implementation
of the algorithm for solving (2.4). To overcome this drawback, in this section, we introduce
the smoothing functions for G and φ, and recall some properties related to these smoothing
functions. Let t ∈ R be a parameter.

Define Ḡ : R × Rn → R by

Ḡ(t, x) =
∫

V

ḡ(t, x, v)dv,

123

J Glob Optim (2010) 47:133–159 139

where ḡ : R × Rn × Rm → R is defined by

ḡ(t, x, v) =
√

(g(x, v))2 + 4t2 + g(x, v)

2
. (3.5)

The function ḡ is the Chen–Harker–Kanzow–Smale smoothing function of [g(x, v)]+. Other
smoothing functions of [g(x, v)]+ can be found in [24]. It is obvious that for any t �= 0,
Ḡ(t, x) is smooth with respect to variable x and

∇x Ḡ(t, x) =
∫

V

∇x ḡ(t, x, v)dv. (3.6)

Define φ̄ : R3 → R by

φ̄(t, a, b) =
√

a2 + b2 + t2 − a − b.

Let w ∈ R and h : Rm → R be continuously differentiable. Denote φ̃ : R × R × Rm → R
as follow

φ̃(t, w, v) = φ̄(t, w, h(v)). (3.7)

For the functions Ḡ and φ̃, we have the following propositions.

Proposition 3.1 [22] The function Ḡ has the following properties:

(i) It is twice continuously differentiable for any t �= 0.
(ii) There exists a constant C > 0 such that for any x ∈ Rn

∥∥Ḡ(t, x) − G(x)
∥∥ ≤ C |t |.

(iii) The function Ḡ is semismooth with respect to (t, x).

Proposition 3.2 [22] The function φ̃ defined in (3.7) has the following properties:

(i) It is twice continuously differentiable for any t �= 0.
(ii) There exists a constant C > 0 such that for any (w, v) ∈ R × Rn

∥∥∥φ̃(t, w, v) − φ(w, h(v))

∥∥∥ ≤ C |t |.

(iii) The function φ̃ is semismooth with respect to (t, w, v).

Denote y = (t, s, z) = (t, s, x, u, v, w) ∈ R2+n+p(m+q+1). We define the following
system of equations:

�(y) = 0, (3.8)

where

�(y) =
⎛

⎝
t

Ḡ(t, x) + s
P̄(t, z)

⎞

⎠

123

140 J Glob Optim (2010) 47:133–159

and

P̄(t, z) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∇ f (x) +
p∑

i=1
ui∇x g(x, vi)

φ̄(t, u1,−g(x, v1))
...

φ̄(t, u p,−g(x, v p))

−u1∇vg(x, v1) +
q∑

j=1
w1

j∇c j (v
1)

...

−u p∇vg(x, v p) +
q∑

j=1
w

p
j ∇c j (v

p)

φ̄(t, w1
1,−c1(v

1))
...

φ̄(t, w1
q ,−cq(v1))

...

φ̄(t, w p
1 ,−c1(v

p))
...

φ̄(t, w p
q ,−cq(v p))

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It follows from Propositions 3.1 and 3.2 that the following result holds.

Theorem 3.1 � in (3.8) is semismooth.

It is obvious that if y = (t, s, z) with s ≥ 0 is a solution of (3.8) then (s, z) is a solution
to (2.4), and hence z = (x, u, v, w) is a solution of (1.6).

4 A smoothing Newton-type algorithm

In this section, motivated by the two methods in [12,24], we present a new smoothing
Newton-type method for solving the KKT system of (1.1).

Define a merit function of (3.8) by

θ(y) = 1

2
‖�(y)‖2.

Note that θ(·) is smooth at any y ∈ R2+n+p(m+q+1) with t > 0.
Let γ ∈ (0, 1) be a constant and choose (t̄, s̄) ∈ R2++ such that γ

√
t̄2 + s̄2 < 1. Let

ȳ = (t̄, s̄, 0) ∈ R2 × Rn+p(m+q+1). For two sequences {yk}∞k=0 ⊂ R2++ × Rn+p(m+q+1) and
{αk}∞k=0 ⊂ R++, we define

β0 = β(y0) := γ min{1, ‖α0∇θ(y0)‖2}
and

βk = β(yk) :=
{

βk−1, if γ min{1, ‖αk∇θ(yk)‖2} > βk−1

γ min{1, ‖αk∇θ(yk)‖2}, otherwise.
(4.1)

123

J Glob Optim (2010) 47:133–159 141

Then, because for any y0 ∈ R2++ × Rn+p(m+q+1) and α0 > 0, β0 ≤ γ < 1, it follows that
(t̄, s̄) ≥ β0(t̄, s̄).

Now, we state the smoothing Newton-type algorithm for solving (3.8).

Algorithm 4.1
Step 0. (Initialization)

Choose constants ρ, σ, r ∈ (0, 1). Let t0 = t̄ , s0 = s̄, z0 ∈ Rn+p(m+q+1) be an
arbitrary point and y0 = (t0, s0, z0). Set k := 0.

Step 1. (Stopping Test)
If ‖∇θ(yk)‖ = 0, stop. Otherwise, let

αk = min

{
1,

sk

Ḡ(tk, xk) + sk
,

tk
|∇tθ(yk)|

}
, (4.2)

and compute βk by (4.1).
Step 2. (Compute Search Direction)

Compute (dk
N)t and (dk

N)s by

(dk
N)t = βk t̄ − tk, (dk

N)s = βk s̄ − sk . (4.3)

And compute (dk
N)z by solving the following linear system

∇z P̄(tk, zk)T (dk
N)z = −

[
P̄(tk, zk) + ∇t P̄(tk, zk)T (dk

N)t

]
. (4.4)

Let dk
N = ((dk

N)t , (dk
N)s, (dk

N)z).
Let dk

G be computed by

dk
G = −αk∇θ(yk) + βk ȳ. (4.5)

Step 3. (Computation of New Iterate)
If the solution dk

N of (4.3)–(4.4) exists and

θ(yk + dk
N) ≤ σθ(yk), (4.6)

then (*** fast step ***)

set yk+1 := yk + dk
N ;

else (*** safe step ***)
let mk be the smallest nonnegative integer m satisfying

θ(yk + rmdk
G) ≤ θ(yk) − σαk

(
1 − γ

√
t̄ 2 + s̄2

)
rm‖∇θ(yk)‖2, (4.7)

and set yk+1 = yk + rmk dk
G .

Step 4. Set k := k + 1 and go to Step 1.

Remark It is remarked that Ḡ(t, x) in (3.8) and its derivative are not evaluated exactly. The
functions quad or dblquad with the absolute error tolerance 10−6 in Matlab are used to
compute Ḡ(t, x) and its derivative. Numerical results show that this choice is proper.

In the rest of this section, we discuss some properties for Algorithm 4.1.

Lemma 4.1 For any ỹ = (t̃, s̃, z̃) ∈ R2++ × Rn+p(m+q+1). Suppose that ∇�(ỹ) is nonsin-
gular, then there exist a closed neighborhood N (ỹ) of ỹ and a positive number λ̃ ∈ (0, 1]

123

142 J Glob Optim (2010) 47:133–159

such that for any y = (t, s, z) ∈ N (ỹ) and all λ ∈ (0, λ̃] we have (t, s) ∈ R2++, ∇�(y) is
invertible and

θ(y + λd y
G) ≤ θ(y) − λσαy

(
1 − γ

√
t̄2 + s̄2

)
‖∇θ(y)‖2, (4.8)

where

d y
G = −αy∇θ(y) + β(y)ȳ (4.9)

and

αy = min

{
1,

s

Ḡ(t, x) + s
,

t

|∇tθ(y)|
}

, β(y) = γ min{1, ‖αy∇θ(y)‖2}.

Proof Since ∇�(ỹ) is invertible and (t̃, s̃) ∈ R2++, there exists a closed neighborhood N (ỹ)

of ỹ such that for any y = (t, s, z) ∈ N (ỹ) we have (t, s) ∈ R2++ and that ∇�(y) is
invertible. For any y ∈ N (ỹ) and λ ∈ [0, 1], define

gy(λ) = θ(y + λd y
G) − θ(y) − λ∇θ(y)T d y

G ,

then, it follows from the Mean Value Theorem that

gy(λ) = λ

1∫

0

(
Dθ(y + τλd y

G) − Dθ(y)
)

d y
Gdτ.

Since Dθ(·) is uniformly continuous on N (ỹ) and d y
G → d ỹ

G as y → ỹ, for all y ∈ N (ỹ)

lim
λ↓0

gy(λ)/λ = 0. (4.10)

On the other hand, it is easy to see that β(y) ≤ γαy‖∇θ(y)‖ holds whether αy‖∇θ(y)‖ ≤ 1
or not. Therefore, by (4.9) and (4.10), we have that for all λ ∈ [0, 1] and y ∈ N (ỹ),

θ(y + λd y
G) = θ(y) + λ∇θ(y)T d y

G + gy(λ)

= θ(y) − λαy‖∇θ(y)‖2 + λ∇θ(y)T β(y)ȳ + gy(λ)

≤ θ(y) − λαy‖∇θ(y)‖2 + λαyγ ‖∇θ(y)‖2‖ȳ‖ + gy(λ)

= θ(y) − λαy

(
1 − γ

√
t̄ 2 + s̄2

)
‖∇θ(y)‖2 + o(λ). (4.11)

Then from (4.11) we can find a positive number λ̃ ∈ (0, 1] such that for all λ ∈ (0, λ̃] and
y ∈ N (ỹ), (4.8) holds. ��

We can get the following result directly from Lemma 4.1.

Proposition 4.1 For any k ≥ 0, if yk ∈ R2++ × Rn+p(m+q+1) and ∇�(yk) is nonsingular,
then Algorithm 4.1 is well defined at the kth iteration.

Proposition 4.2 For each fixed k ≥ 0, if (tk, sk) ∈ R2++ satisfies (tk, sk) ≥ βk(t̄, s̄) and
∇�(yk) is nonsingular, then we have

(tk+1, sk+1) ≥ βk+1(t̄, s̄).

123

J Glob Optim (2010) 47:133–159 143

Proof By (4.3) and the fact that βk+1 ≤ βk , it is obvious that the conclusion is true when the
fast step is taken. Now we prove that the conclusion also holds when the safe step is taken.
It follows from (4.2) and (4.5) that

(dk
G)t ≥ −tk + βk t̄ .

Consequently, we have that

tk+1 − βk+1 t̄ = tk + rmk (dk
G)t − βk+1 t̄

≥ (1 − rmk)tk + rmk βk t̄ − βk t̄
= (1 − rmk)(tk − βk t̄)

≥ 0,

where rmk is the acceptable step in Step 3 of Algorithm 4.1, the first inequality comes from
the fact that βk+1 ≤ βk , the second inequality comes from the assumption that tk ≥ βk t̄ . By
an analogous way, we can prove that

sk+1 − βk+1s̄ ≥ 0.

Hence, we obtain the desired result and complete the proof. ��
Theorem 4.1 Suppose that for every k ≥ 0, ∇�(yk) is nonsingular as long as (tk, sk) ∈
R2++ and (tk, sk) ≥ βk(t̄, s̄). Then an infinite sequence {yk = (tk, sk, zk)} generated by
Algorithm 4.1 satisfies that (tk, sk) ∈ R2++ and (tk, sk) ≥ βk(t̄, s̄).

Proof First, since y0 = (t̄, s̄, z0) satisfies (t̄, s̄) ≥ β0(t̄, s̄), we have from Propositions 4.1
and 4.2 that y1 is well defined, (t1, s1) ∈ R2++ and (t1, s1) ≥ β1(t̄, s̄). Then, by repeatedly
resorting to Propositions 4.1 and 4.2 we can prove that an infinite sequence {yk} is generated,
(tk, sk) ∈ R2++ and (tk, sk) ≥ βk(t̄, s̄). The proof is complete. ��

5 Convergence analysis

In this section, we prove the global and superlinear convergence of Algorithm 4.1. To this
end, we first discuss the CD-regularity of �, which is a basic condition used frequently in
convergence analysis.

Theorem 5.1 Let t ∈ R. Then � is CD-regular at y = (t, s, z) if P̄(t, ·) is CD-regular at z.

Proof It is easy to see that P̄ is regular. It then follows from Proposition 2.3.15 in [1] that

∂(t,z) P̄(t, z) ⊆ ∂t P̄(t, z) × ∂z P̄(t, z).

Consequently, by this, we can see that every element Q in ∂�(y) has the following form

Q =
⎛

⎝
1 0 0
ζ1 1 ζ2

Ut 0 Uz

⎞

⎠ .

Here ζ1 is the first component of ζ and ζ2 is the sub-vector of ζ obtained by just removing
the first component of ζ , where ζ ∈ ∂(t,z)Ḡ(t, x), Ut ∈ ∂t P̄(t, z) and Uz ∈ ∂z P̄(t, z). It is
obvious that Q is nonsingular if Uz is nonsingular. We obtain the desired result and complete
the proof. ��

123

144 J Glob Optim (2010) 47:133–159

Let

L(z) = ∇ f (x) +
p∑

i=1

ui∇x g(x, vi),

li (z) = −ui∇vg(x, vi) +
q∑

j=1

wi
j∇c j (v

i), i ∈ P.

And let

∇c(vi) =
(
∇c1(v

i), . . . , ∇cq(vi)
)

, i ∈ P.

We make the following assumptions.

(A1) Dx L(z) is positive semidefinite. Moreover, it is positive definite in the null space
of Span(∇x g(x, v)T). That is, dT Dx L(z)d > 0 for all d ∈ Rn\{0} satisfying
∇x g(x, v)T d = 0.

(A2) Dvi li (z) is positive semidefinite. Moreover, it is positive definite in the null space of
Span(∇c(vi)T). That is, dT Dvi li (z)d > 0 for all d ∈ Rm\{0} satisfying∇c(vi)T d=0.

The following theorem comes from [14], which shows that Assumptions (A1) and (A2)
are sufficient for ∇z P̄(t, z) to be nonsingular for every t > 0.

Theorem 5.2 Let Assumptions (A1) and (A2) hold at z. Then ∇z P̄(t, z) is nonsingular for
every t > 0.

Remark By Theorems 5.1 and 5.2, we see that if Assumptions (A1) and (A2) hold at a
considered point z, then ∇�(y) is nonsingular for all t > 0.

Let (0, z̄) = (0, x̄, ū, v̄, w̄) ∈ R1+n+p(1+m+q) be a solution of P̄(t, z) = 0. For i ∈ P ,
let I (v̄i) = {

j ∈ Q : c j (v̄
i) = 0

}
. Before giving a sufficient condition for CD-regularity

of P̄(0, ·) at z̄, we also need the following assumptions.

(A3) For each i ∈ P , ūi > 0.
(A4) The vectors ∇x g(x̄, v̄i), i ∈ P are linearly independent.
(A5) For each i ∈ P , the vectors ∇c j (v̄

i), j ∈ I (v̄i) are linearly independent.
(A6) For all (dT , ξ T

1 , . . . , ξ T
p)T ∈ S(x̄, v̄)\{0},

dT Dx L(z̄)d + 2
p∑

i=1

ūi d
T ∇2

xvg(x̄, v̄i)ξi −
p∑

i=1

ξ T
i Dvi li (z̄)ξi < 0,

where S(x̄, v̄) be the set of all (dT , ξ T
1 , . . . , ξ T

p)T ∈ �n × �mp satisfying

∇x g(x̄, v̄i)T d + ∇vg(x̄, v̄i)T ξi = 0, for i = 1, 2, . . . , p.

Now, we state and prove a theorem which shows that Assumptions (A3)–(A6) are sufficient
for P̄(0, ·) to be CD-regular at the solution z̄ of P̄(0, z) = 0.

Theorem 5.3 Suppose that (0, z̄) is a solution of P̄(t, z) = 0 and Assumptions (A3)–(A6)
hold. Then P̄(0, ·) is CD-regular at z̄.

123

J Glob Optim (2010) 47:133–159 145

Proof It is readily to know that the elements of ∂z P̄(0, z̄) are of the form

W =

⎛

⎜⎜⎝

Dx L(z̄) ∇x g(x̄, v̄) F 0
∇x g(x̄, v̄)T 0 G 0

−FT −GT H Q
0 0 U V

⎞

⎟⎟⎠ ,

where

∇x g(x̄, v̄) = (∇x g(x̄, v̄1), . . . , ∇x g(x̄, v̄ p)
)
, F = (

ū1∇2
xvg(x̄, v̄1), . . . , ū p∇2

xvg(x̄, v̄ p)
)
,

G = diag
(
Dvg(x̄, v̄1), . . . , Dvg(x̄, v̄ p)

)
, H = diag

(
Dv1 l1(z̄), . . . , Dv p l p(z̄)

)
,

Q = diag
(∇c(v̄1), . . . , ∇c(v̄ p)

)

and

U = diag
(
�1∇c(v̄1)T , . . . , �p∇c(v̄ p)T

)
, V = diag

(
�1, . . . , � p)

with �i = diag
(
ai1, . . . , aiq

)
and �i = diag

(
bi1, . . . , biq

)
satisfying

⎧
⎨

⎩

(ai j , bi j) = (0,−1), if j ∈ Q\I (v̄i),

(ai j , bi j) = (1, 0), if j ∈ { j ∈ I (v̄i) : w̄i
j > 0},

(ai j , bi j) ∈ {(a, b) ∈ R2 : (a − 1)2 + (b + 1)2 ≤ 1
}
, if j ∈ { j ∈ I (v̄i) : w̄i

j = 0}.
(5.12)

It is only necessary to prove that W is nonsingular under the given assumptions. By (5.12),
it is clear that W is nonsingular if and only if

W̄ =

⎛

⎜⎜⎝

∇x L(z̄) ∇x g(x̄, v̄) F 0
∇x g(x̄, v̄)T 0 G 0

−FT −GT H Q̄
0 0 Ū V̄

⎞

⎟⎟⎠

is nonsingular, where

Q̄ = diag
(∇c(v̄1)·I (v̄1), . . . ,∇c(v̄ p)·I (v̄ p)

)
, V̄ = diag

(
�1

I (v̄1)I (v̄1)
, . . . , �

p
I (v̄ p)I (v̄ p)

)

and

Ū = diag
(
�1

I (v̄1)I (v̄1)
(∇c(v̄1)·I (v̄1))

T , . . . , �
p
I (v̄ p)I (v̄ p)(∇c(v̄ p)·I (v̄ p))

T
)

.

Moreover, it is easy to see that for i ∈ P and j ∈ { j ∈ I (v̄i) : w̄i
j = 0}, bi j = −1 provided

ai j = 0. In this case we delete the row and column which includes bi j = −1, the obtained
matrix has the same nonsingularity as W̄ . Without loss of generality, we assume that ai j > 0
for i ∈ P and j ∈ { j ∈ I (v̄i) : w̄i

j = 0}. It is clear that a−1
i j bi j ≤ 0 for i ∈ P and j ∈ I (v̄i).

123

146 J Glob Optim (2010) 47:133–159

Suppose that

W̄

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1

d2

ξ1
...

ξp

ζ1
...

ζp

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0, (5.13)

where d1 ∈ Rn , d2 ∈ R p , ξi ∈ Rm and ζi ∈ R|I (v̄i)| (i ∈ P). Then (5.13) implies

Dx L(z̄)d1 + ∇x g(x̄, v̄)d2 +
p∑

i=1

ūi∇2
xvg(x̄, v̄i)ξi = 0, (5.14)

∇x g(x̄, v̄i)T d1 + ∇vg(x̄, v̄i)T ξi = 0, i ∈ P, (5.15)

−ūi∇2
vx g(x̄, v̄i)d1 − ∇vg(x̄, v̄i)d2i + Dvi li (z̄)ξi + ∇c(v̄i)·I (v̄i)ζi = 0, i ∈ P, (5.16)

∇c j (v̄
i)T ξi + a−1

i j bi jζi j = 0, i ∈ P, j ∈ I (v̄i), (5.17)

where d2i and ζi j are the i th component of d2 and the j th component of ζi , respectively. By
(5.14), it follows that

dT
1 Dx L(z̄)d1 + dT

1 ∇x g(x̄, v̄)d2 +
p∑

i=1

ūi d
T
1 ∇2

xvg(x̄, v̄i)ξi = 0. (5.18)

By (5.15) and (5.16), we know that for every i ∈ P ,

d2i∇x g(x̄, v̄i)T d1 − ūiξ
T
i ∇2

vx g(x̄, v̄i)d1 + ξ T
i Dvi li (z̄)ξi + ξ T

i ∇c(v̄i)·I (v̄i)ζi = 0,

which implies

dT
1 ∇x g(x̄, v̄)d2 −

p∑

i=1

ūiξ
T
i ∇2

vx g(x̄, v̄i)d1 +
p∑

i=1

ξ T
i Dvi li (z̄)ξi +

p∑

i=1

ξ T
i ∇c(v̄i)·I (v̄i)ζi = 0.

(5.19)

By (5.17), we obtain that
p∑

i=1

ξ T
i ∇c(v̄i)·I (v̄i)ζi +

p∑

i=1

∑

j∈I (v̄i)

a−1
i j bi jζ

2
i j = 0. (5.20)

By (5.18) and (5.19), it holds that

dT
1 Dx L(z̄)d1 + 2

p∑

i=1

ūiξ
T
i ∇2

vx g(x̄, v̄i)d1 −
p∑

i=1

ξ T
i Dvi li (z̄)ξi −

p∑

i=1

ξ T
i ∇c(v̄i)·I (v̄i)ζi = 0,

which implies, together with (5.20), that

dT
1 Dx L(z̄)d1 + 2

p∑

i=1

ūiξ
T
i ∇2

vx g(x̄, v̄i)d1 −
p∑

i=1

ξ T
i Dvi li (z̄)ξi = −

p∑

i=1

∑

j∈I (v̄i)

a−1
i j bi jζ

2
i j

≥ 0 (5.21)

123

J Glob Optim (2010) 47:133–159 147

where the inequality comes from the fact that a−1
i j bi j ≤ 0 for i ∈ P and j ∈ I (v̄i). Since

(dT , ξ T
1 , . . . , ξ T

p)T satisfies (5.15), by (5.21) and (A6), we know that d1 = 0 and ξi = 0
for i ∈ P . Consequently, by (A3), it follows that d2 = 0 from (5.14). Moreover, by (A5)
and (5.16), it follows that ζi = 0 for i ∈ P . We obtain the desired result and complete
the proof. ��

Under the strict complementarity assumption for the lower level problem, a sufficient
condition for CD-regularity is given in [30]. In the theorem above, we do not assume strict
complementary slackness in the lower level problem, but the upper level strict complemen-
tarity condition is need. In order to obtain another condition for CD-regularity of �̄(0, ·),
in which the strict complementarity conditions in both the upper level and the lower level
problems are not assumed, we further need the following assumptions.

(A4′) The vectors ∇x g(x̄, v̄i), i ∈ P(z̄) are linearly independent, where P(z̄) = {i ∈ P :
g(x̄, v̄i) = 0}.

(A7) For any (dT
1 , dT

2 , ξ T
1 , . . . , ξ T

p)T ∈ �(z̄),

dT
1 Dx L(z̄)d1 − 2

∑

i∈P(z̄)

ξ T
i ∇vg(x̄, v̄i)d2i +

p∑

i=1

ξ T
i Dvi li (z̄)ξi > 0, (5.22)

where �(z̄) is the set of all (dT
1 , dT

2 , ξ T
1 , . . . , ξ T

p)T ∈ Rn+|P(z̄)|+mp satisfying

Dx L(z̄)d1 + (∇x g(x̄, v̄)·P(z̄))d2 +
p∑

i=1

ūi∇2
xvg(x̄, v̄i)ξi = 0

and (dT
1 , ξ T

1 , . . . , ξ T
p)T �= 0.

Theorem 5.4 Suppose that (0, z̄) is a solution of P̄(t, z) = 0 and Assumptions (A4′), (A5)
and (A7) hold. Then P̄(0, ·) is CD-regular at z̄.

Proof Since we do not assume strict complementary slackness in the upper level problem,
every element W of ∂z P̄(0, z̄) is of the form

W =

⎛

⎜⎜⎝

Dx L(z̄) ∇x g(x̄, v̄) F 0
�∇x g(x̄, v̄)T � �G 0

−FT −GT H Q
0 0 U V

⎞

⎟⎟⎠ ,

where � = diag(λ1, . . . , λp) and � = diag(γ1, . . . , γp) satisfying
⎧
⎨

⎩

(λi , γi) = (0,−1), if i ∈ P\P(z̄),
(λi , γi) = (1, 0), if i ∈ {i ∈ P(z̄) : ūi > 0},
(λi , γi) ∈ {(a, b) ∈ R2 : (a − 1)2 + (b + 1)2 ≤ 1

}
, if i ∈ {i ∈ P(z̄) : ūi = 0},

(5.23)

and other notation are the same as those used in the proof of Theorem 5.3. By (5.23), we
know that for i ∈ {i ∈ P(z̄) : ūi = 0}, γi = −1 provided λi = 0. In this case we delete the
row and column which includes γi , the obtained matrix has the same nonsingularity as W .
The similar conclusion also holds for i ∈ P and j ∈ { j ∈ I (v̄i) : w̄i

j = 0}. Hence, without

123

148 J Glob Optim (2010) 47:133–159

loss of generality, we assume that λi > 0 (i ∈ {i ∈ P(z̄) : ūi = 0}) and ai j > 0 (i ∈ P ,
j ∈ { j ∈ I (v̄i) : w̄i

j = 0}). It is easy to see that W is nonsingular if and only if

W̃ =

⎛

⎜⎜⎝

Dx L(z̄) ∇x g(x̄, v̄)·P(z̄) F 0
(∇x g(x̄, v̄)·P(z̄))

T �−1
P(z̄)�P(z̄) GP(z̄)· 0

−FT −(GP(z̄)·)T H Q̄
0 0 Ū V̄

⎞

⎟⎟⎠

is nonsingular, where �P(z̄) = �P(z̄)P(z̄), �P(z̄) = �P(z̄)P(z̄), and Q̄, Ū and V̄ are the same
as those used in Theorem 5.3.

Suppose that

W̃

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1

d2

ξ1
...

ξp

ζ1
...

ζp

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0, (5.24)

where d1 ∈ Rn , d2 ∈ R|P(z̄)|, ξi ∈ Rm and ζi ∈ R|I (v̄i)| (i ∈ P). Then (5.24) implies

Dx L(z̄)d1 + ∇x g(x̄, v̄)·P(z̄)d2 +
p∑

i=1

ūi∇2
xvg(x̄, v̄i)ξi = 0, (5.25)

∇x g(x̄, v̄i)T d1 + λ−1
i γi d2i + ∇vg(x̄, v̄i)T ξi = 0, i ∈ P(z̄), (5.26)

−ūi∇2
vx g(x̄, v̄i)d1 − ∇vg(x̄, v̄i)d2i + Dvi li (z̄)ξi + ∇c(v̄i)·I (v̄i)ζi = 0, i ∈ P(z̄), (5.27)

−ūi∇2
vx g(x̄, v̄i)d1 + Dvi li (z̄)ξi + ∇c(v̄i)·I (v̄i)ζi = 0, i ∈ P\P(z̄), (5.28)

∇c j (v̄
i)T ξi + a−1

i j bi jζi j = 0, i ∈ P, j ∈ I (v̄i). (5.29)

By (5.25)–(5.29), we have

dT
1 Dx L(z̄)d1 − 2

∑

i∈P(z̄)

ξ T
i ∇vg(x̄, v̄i)d2i +

p∑

i=1

ξ T
i Dvi li (z̄)ξi

−
p∑

i=1

∑

j∈I (v̄i)

a−1
i j bi jζ

2
i j −

∑

i∈P(z̄)

λ−1
i γi d

2
2i = 0, (5.30)

which, together with the fact that a−1
i j bi j ≤ 0 for i ∈ P, j ∈ I (v̄i) and λ−1

i γi ≤ 0 for
i ∈ P(z̄), implies

dT
1 Dx L(z̄)d1 − 2

∑

i∈P(z̄)

ξ T
i ∇vg(x̄, v̄i)d2i +

p∑

i=1

ξ T
i Dvi li (z̄)ξi ≤ 0. (5.31)

By (5.25), (5.31) and (A7), we know that d1 = 0 and ξi = 0 for i ∈ P . Consequently, by
(5.25), we obtain

∇x g(x̄, v̄)·P(z̄)d2 = 0,

123

J Glob Optim (2010) 47:133–159 149

which implies
∑

i∈P(z̄)

d2i∇x g(x̄, v̄i) = 0.

By (A4′), d2 = 0. Moreover, by (5.27) and (5.28),
∑

j∈I (v̄i)

∇c j (v̄
i)ζi j = 0, i ∈ P.

By (A5), ζi = 0, i ∈ P . Therefore, (dT
1 , dT

2 , ξ T
1 , . . . , ξ T

p , ζ T
1 , . . . , ζ T

p)T = 0, which shows

that W̃ is nonsingular. We obtain the desired result and complete the proof. ��
Remark (a) By Theorems 5.1, 5.3 and 5.4, we see that if Assumptions (A3)–(A6), or Assump-
tions (A4′), (A5) and (A7) hold at the solution (0, 0, z̄) of �(y) = 0, then � is CD-regular
at (0, 0, z̄). This shows that Algorithm 4.1 can actually handle the SIP problem with the
violated strict complementarity in the lower level problem (or in both the upper level and the
lower level problems). (b) For a solution ȳ of �(y) = 0, if ūi = 0 and g(x̄, v̄i) = 0 for some
index i , then we get from (2.3) that

q∑

j=1

w̄i
j∇c j (v̄

i) = 0 and w̄i
j ≥ 0, c j (v̄

i) ≤ 0, w̄i
j c j (v̄

i) = 0 for j ∈ Q.

Hence, ∇c j (v̄
i), j ∈ I (v̄i) are linearly dependent, provided at least one w̄i

j �= 0. It means
that the possible violation of the strict complementarity in the upper level is shifted to the
explicit violation of LICQ in the lower level. At same time, the optimality criteria for the
lower level becomes a Fritz–John-type condition. In this paper, we focus attention on the case
where ū �= 0. Thus, we may obtain a solution of (1.6) by dropping the part indexed by i with
ūi = 0. (c) The Lagrange multiplier ūi corresponding to the objective function g(x, ·) in the
lower level is the Lagrange multiplier corresponding to the constraint g(·, vi) in the upper
level. Assumption (A7) involves the first- and the second-order terms not only of the lower,
but also of the upper level. It is different from the second order optimality conditions for SIP
problems given in [28]. As future work, we will work on how to find a better condition under
which the considered P̄(0, ·) is CD-regular.

Theorem 5.5 Let {yk} be the sequences generated by Algorithm 4.1 and y∗ be a limit point
of a subsequence {yk}k∈K . Suppose that for every k ≥ 0, ∇�(yk) is nonsingular as long as
(tk, sk) ∈ R2++ and (tk, sk) ≥ βk(t̄, s̄), P̄(t∗, ·) is CD-regular at z∗ and {yk}k∈K satisfies

lim inf
k∈K , k→∞

tk

|∇tθ(yk)| > 0 (5.32)

and

lim inf
k∈K , k→∞

sk

|sk + Ḡ(tk, xk)| > 0. (5.33)

Then y∗ is a solution of �(y) = 0.

Proof It follows from Proposition 4.2 that an infinite sequence {yk} is generated such that
(tk, sk) ≥ βk(t̄, s̄) for all k ≥ 0. From the design of Algorithm 4.1, θ

(
yk+1

)
< θ

(
yk
)

for
all k ≥ 0. Hence the two sequences

{
θ(yk)

}
and {βk} are monotonically decreasing. Since

θ(yk), βk ≥ 0 (k ≥ 0), there exist θ∗, β∗ ≥ 0 such that θ(yk) → θ∗ and βk → β∗ as

123

150 J Glob Optim (2010) 47:133–159

k → ∞. If θ∗ = 0, then from the continuity of θ(·) and β(·) we have θ(y∗) = θ∗ = 0 and
obtain the desired result. Suppose that θ∗ > 0. This implies that we eventually take only safe
steps in Algorithm 4.1 since otherwise we would have

θ(yk+1) ≤ σθ(yk)

for infinitely many k which imply θ∗ = 0. Therefore, we can assume without loss of gener-
ality that all steps are safe steps.

Since P̄(t∗, ·) is CD-regular at z∗, by Theorem 5.1, � is CD-regular at y∗. Furthermore,
by (5.32) and (5.33), it is easy to see that

lim inf
k∈K , k→∞ αk > 0,

which implies that β∗ > 0 and (t∗, s∗) ≥ β∗(t̄, s̄), we see that (t∗, s∗) ∈ R2++. Then ∇�(y∗)
exists and is nonsingular from the CD-regularity of P̄(t∗, ·) at z∗. Hence, from Lemma 4.1
there exists a closed neighborhood N (y∗) of y∗ and a positive number λ̃ ∈ (0, 1] such that
for any y = (t, s, z) ∈ N (y∗) and all λ ∈ (0, λ̃] we have (t, s) ∈ R2++, ∇�(y) is invertible
and (4.8) holds. Therefore, for a nonnegative integer l such that rl ∈ (0, λ̃], we have

θ(yk + rldk
G) ≤ θ(yk) − σαk

(
1 − γ

√
t̄ 2 + s̄2

)
rl‖∇θ(yk)‖2.

for all sufficiently large k. This contradicts the fact that the sequence
{
θ(yk)

}
converges

to θ∗ > 0 because αk‖∇θ(yk)‖2 ≥ α2
k ‖∇θ(yk)‖2 > β∗/γ > 0. So, we complete our

proof. ��
Remark Let {yk} be the sequences generated by Algorithm 4.1 and y∗ be a limit point of
a subsequence {yk}k∈K . Suppose that the assumed conditions in Theorem 5.5 hold. Then
G(x∗) = 0 since s∗ ≥ 0 and �(y∗) = 0 by Theorem 5.5, which implies that x∗ is a feasible
solution of (1.1). Consequently, from the CD-regularity of � at y∗, we have

‖xk − x∗‖ ≤ ‖yk − y∗‖ = O(‖�(yk) − �(y∗)‖) = O(ε)

provided ‖�(yk)‖ ≤ ε, which shows that xk is an approximate feasible solution of (1.1).
In the following proposition, we present a condition under which (5.32) holds.

Proposition 5.1 Let {yk} be a sequence generated by Algorithm 4.1 and y∗ = limk∈K {yk}
for some subset K ⊂ {1, 2, . . .}. Suppose that y∗ satisfies

∫

V

1

|g(x∗, v)|dv < ∞. (5.34)

Then we have

lim
k∈K

tk

|∇tθ(yk)| > 0.

Proof By direct computation, we have that for any a, b ∈ R, x ∈ Rn and t > 0,

|∇t φ̄(t, a, b)φ̄(t, a, b)| = t√
a2 + b2 + t2

(
√

a2 + b2 + t2 − a − b)

≤ t√
a2 + b2 + t2

(
√

a2 + b2 + t2 + |a| + |b|)
≤ 3t (5.35)

123

J Glob Optim (2010) 47:133–159 151

and

∇t Ḡ(t, x) = 2t
∫

V

1√
(g(x, v))2 + 4t2

dv. (5.36)

Consequently,

|∇tθ(yk)| ≤ tk +
p∑

i=1

|∇t φ̄(tk, uk
1,−g(xk, v1k))φ̄(tk, uk

1,−g(xk, v1k))|

+
p∑

i=1

q∑

j=1

|∇t φ̄(tk, wik
j ,−c j (v

ik))φ̄(tk, wik
j ,−c j (v

ik))|

+∇t Ḡ(tk, xk)(Ḡ(tk, xk) + sk)

≤ tk + 3p(q + 1)tk + 2tk(Ḡ(tk, xk) + sk)

×
∫

V

1√
(g(xk, v))2 + 4(tk)2

dv. (5.37)

Hence, we have

lim
k∈K

tk

|∇tθ(yk)| ≥ 1

1 + 3p(q + 1) + 2(G(x∗) + s∗ + 1)
∫

V
1

|(g(x∗,v))| dv
> 0.

We obtain the desired result and complete the proof. ��
In the rest of this section, we investigate the local convergence rate of Algorithm 4.1. We

make the following standard assumption:

(B1) Let y∗ = (t∗, s∗, z∗) = (0, 0, z∗) be an accumulation point of the sequence {yk} gen-
erated by Algorithm 4.1. Suppose limk∈K yk = y∗ for some subset K ⊂ {1, 2, . . .},
y∗ is a solution of the system of equations (3.8) and P̄(0, ·) is CD-regular at z∗.

We need the following proposition which has already been shown by Moré and Sorensen
[17].

Proposition 5.2 Assume that w∗ ∈ Rl is an isolated accumulation point of a sequence
{wk} ⊆ Rl such that, for every subsequence {wk}K converging to w∗; there is an infinite
subset K̃ ⊆ K such that {‖wk+1 − wk‖}K̃ → 0. Then the whole sequence wk converges to
w∗.

The original version of the following result is due to Facchinei and Soares [3]; here we
cite a slight different version from Kanzow and Qi [12].

Proposition 5.3 Let G : Rl → Rl be locally Lipschitz continuous, w∗ ∈ Rl with G(w∗) = 0
such that all elements in ∂G(w∗) are nonsingular, and assume that there are two sequences
{wk} ⊆ Rl and {dk} ⊆ Rl with {wk} → w∗ and ‖wk + dk − w∗‖ = o(‖wk − w∗‖). Then
‖G(wk + dk)‖ = o(‖G(wk)‖).
Theorem 5.6 Suppose that {yk} is a sequence generated by Algorithm 4.1 and y∗ is a point
satisfying (B1). Then the whole sequence {yk} converges to y∗, and

‖yk+1 − y∗‖ = o(‖yk − y∗‖). (5.38)

123

152 J Glob Optim (2010) 47:133–159

Proof First, since P̄(0, ·) is CD-regular at z∗, by Theorem 5.1 it follows that � is CD-regular
at y∗, and hence y∗ is a locally isolated solution of (3.8). Since {θ(yk)} decreases monoton-
ically and yk → y∗ as k ∈ K , k → ∞, we have that {θ(yk)} → θ(y∗) = 0 on the whole
sequence. Consequently, every accumulation point of {yk} is a solution of (3.8), and hence
y∗ is an isolated accumulation point of {yk}. Now let {yk}K̄ be a subsequence converging to
y∗. Then

{‖�(yk)‖}K̄ → ‖�(y∗)‖ = 0.

It is easy to see that |(dk
N)t | = O(‖�(yk)‖) and |(dk

N)s | = O(‖�(yk)‖) by (4.3) and
(4.1). Consequently, since P̄(0, ·) is CD-regular at z∗, by (4.4) and Lemma 2.1, ‖(dk

N)z‖ =
O(‖�(yk)‖). Therefore, we have

‖dk
N ‖ = O(‖�(yk)‖). (5.39)

On the other hand, by (4.5), it is clear that

‖dk
G‖ = O(‖�(yk)‖). (5.40)

Based on (5.39) and (5.40), it is not difficult to prove that there exists an infinite subsequence
K̃ of K̄ such that

{
‖yk+1 − yk‖

}

K̃
→ 0.

By Proposition 5.2, we know that the whole sequence {yk} converges to y∗.
Now we prove that (5.38) holds. Let

�(t, z) =
(

t
P̄(t, z)

)
.

Then, from Lemma 2.1, for all (t, z) sufficiently close to (t∗, z∗),
∥∥∇�(t, z)−1

∥∥ = O(1).

Hence, from the special structure of ∇�(y), Definition 2.1 and Lemma 2.1, for (tk, zk)

sufficiently close to (0, z∗), we have
∥∥∥
(

tk, zk
)

+
(
(dk

N)t , (d
k
N)z

)
− (

0, z∗)
∥∥∥

=
∥∥∥
(

tk, zk
)

+ (∇�(tk, zk)T)−1
[
−�(tk, zk) + βk

(
t̄, 0
)]− (

0, z∗)
∥∥∥

= O
(∥∥∥�(tk, zk) − �(0, z∗) − ∇�(tk, zk)T

((
tk, zk

)
− (

0, z∗))
∥∥∥
)

+ O(βk t̄)

= o
(∥∥∥
((

tk, zk
)

− (
0, z∗))

∥∥∥
)

+ O
(
θ(yk)

)
. (5.41)

Noticing that � is locally Lipschitz continuous at (0, 0, z∗), we know that for all yk suffi-
ciently close to y∗,

θ(yk) = 1

2
‖�(yk)‖2 = O(‖yk − y∗‖2), (5.42)

which implies, together with the second expression in (4.3), that

|sk + (dk
N)s − s∗| = βk s̄ = O(‖yk − y∗‖2). (5.43)

123

J Glob Optim (2010) 47:133–159 153

Therefore, we know, by combining (5.41), (5.42) and (5.43), that for all yk sufficiently close
to y∗,

‖yk + dk
N − y∗‖ = o(‖yk − y∗‖). (5.44)

Consequently, by Proposition 5.3, we have that eventually only fast steps will be taken in
Step 3 of Algorithm 4.1 and

‖yk+1 − y∗‖ = o(‖yk − y∗‖).
We obtain the desired result and complete the proof. ��

The next corollary follows from Theorems 5.5 and 5.6.

Corollary 5.1 Let {yk} be the sequences generated by Algorithm 4.1 and y∗ be a limit point
of a subsequence {yk}k∈K . Suppose that the assumed conditions in Theorem 5.5 hold. Then
the whole sequence {yk} converges to y∗, and

‖yk+1 − y∗‖ = o(‖yk − y∗‖). (5.45)

6 Preliminary numerical results

In this section, we report our preliminary numerical test results. We implemented Algorithm
4.1 in both Matlab and Fortran 77. We tested 14 problems which we call Problems 1–14.
Problems 1–3 are from [38]. Problem 4 comes from [35] with a revised region. Problem 5 is
first presented in this paper, and Problem 6 is from [2]. Problems 7–12 are some examples in
which the dimension of the parameter v is 2. While Problems 13–14 are two examples with
more higher dimension decision variable, which come from [39] and [11], respectively.

Problem 1

f (x) = 1.21 exp(x1) + exp(x2), g(x, v) = v − exp(x1 + x2),

V = [0, 1], p = 1, (x0, v0) = (2,−2, 1).

Problem 2

f (x) = x2
1 + x2

2 + x2
3 , g(x, v) = x1 + x2 exp(x3v) + exp(2v) − 2 sin(4v),

V = [0, 1], p = 1, (x0, v0) = (−2, 0, 4, 1).

Problem 3

f (x) = 1
3 x2

1 + 1
2 x1 + x2

2 , g(x, v) = (1 − x2
1v2)2 − x1v

2 − x2
2 + x2,

V = [0, 1], p = 1, (x0, v0) = (−4,−1, 1).

Problem 4

f (x) = x2
1 + (x2 − 3)2, g(x, v) = x2 − 2 + x1 sin(v/(x2 − 0.5)),

V = [0, 3], p = 1, (x0, v0) = (1, 6, 1).

Problem 5

f (x) = 2x2
1 + 2x1x3 + 4x2

2 + x2
3 ,

g(x, v) = x1 + x2
1 sin(2v) + 3x1x2 + x2

2 cos(3v) + x2
3 − v,

V = [0, 3π], p = 1, (x0, v0) = (2, 3, 4, 1).

123

154 J Glob Optim (2010) 47:133–159

Problem 6

f (x) = (x1 − 2x2 + 5x2
2 − x3

2 − 13)2 + (x1 − 14x2 + x2
2 + x3

2 − 29)2,

g(x, v) = x2
1 + 2x2v + exp(x1 + x2) − exp(v),

V = [0, 1], p = 1, (x0, v0) = (1,−1, 1).

Problem 7

f (x) = 1
3 x2

1 + 1
2 x1 + x2

2 ,

g(x, v) = (1 − x2
1v2

1)2 − x1v
2
2 − x2

2 + x2,

V = [0, 2] × [0, 1], p = 2, (x0, v0) = (−1,−1, 0, 0, 0, 1).

Problem 8

f (x) = (x1 − 2)2 + x2
2 , g(x, v) = x2

1 cos(v1) + x2sin(v2) − 4,

V = [0, π] × [0, π], p = 1, (x0, v0) = (−1,−1, 1, 0).

Problem 9

f (x) = x2
1 + x2

2 + x3
3 ,

g(x, v) = x1(v1 + v2
2 + 1) + x2(v1v2 − v2

2) + x3(v1v2 + v2
2 + v2) + 1,

V = [0, 1] × [0, 1], p = 1, (x0, v0) = (1, 1, 1, 1, 1).

Problem 10

f (x) = x2
1 + x2

2 + x2
3 ,

g(x, v) = x1 + x2exp(x3v1) − exp(2x1v2) + sin(4v1),

V = [0, 1] × [0, 1], p = 2, (x0, v0) = (1, 1, 1, 1, 1, 0, 1).

Problem 11

f (x) = (x1 − 3)2 + x2
2 − x2,

g(x, v) = x2
1v1cos(v1v2) + (x2 − 1)v2

1sin(v2x1 − 13
9 π) − 4v2 + x1,

V = [0, 2] × [1, 2], p = 1, (x0, v0) = (1, 1, 0, 0).

Problem 12

f (x) = 1
2 (x2

1 + x2
2 + x2

3 + x2
4),

g(x, v) = sin(v1v2) − x1 − x2v1 − x3v2 − x4v1v2,

V = [0, 1] × [0, 1], p = 1, (x0, v0) = (2, 2, 2, 2, 1, 0).

Problem 13

f (x) =
1∫

0

(
n∑

i=1

xi t
i−1 − tan t

)2

dt, g(x, v) = tan v −
n∑

i=1

xiv
i−1,

V = [0, 1], p = 1.

Problem 14

f (x) = 1

2
xT x, g(x, v) = 3 + 4.5sin(4.7π(v − 1.23)/8) −

n∑

i=1

xiv
i−1,

V = [0, 1], p = 1, (x0, v0) = (2, 2, . . . , 2, 1).

123

J Glob Optim (2010) 47:133–159 155

Table 1 The last three iterates generated by Algorithm 4.1

Problem k ‖�(yk)‖ Problem k ‖�(yk)‖ Problem k ‖�(yk)‖
1 5 1.3496e-2 2 7 2.9284e-3 3 8 8.6888e-3

6 9.0575e-5 8 5.1470e-6 9 1.2333e-4

7 4.0332e-9 9 2.4003e-11 10 2.0364e-8

4 17 3.6864e-6 5 7 1.8260e-2 6 18 9.7817e-3

18 1.3323e-6 8 2.6251e-4 19 3.3488e-5

19 4.7863e-7 9 7.7329e-8 20 5.1996e-10

7 14 2.5145e-4 8 6 3.4413e-3 9 8 2.6080e-2

15 1.1943e-6 7 1.5087e-5 9 4.7719e-4

16 1.9282e-8 8 3.7231e-9 10 1.2153e-7

10 7 4.6280e-3 11 6 4.7301e-3 12 8 8.2845e-4

8 1.1212e-5 7 2.7131e-5 9 8.6175e-5

9 1.5885e-10 8 1.0377e-7 10 8.8161e-7

We first implemented Algorithm 4.1 for Problems 1–12 in Matlab and the numerical
experiments were done by using a Pentium III 733MHz computer with 256 MB of RAM.
We compared Algorithm 4.1 with fseminf that is a solver for SIP based on an implemen-
tation of the discretization SQP method in Matlab toolbox. We use ‖�(yk)‖ ≤ 10−6 as
the stopping criterion for Algorithm 4.1, in this case, the obtained final iteration xk is an
approximation of a feasible point of (1.1) under certain assumptions. The values of Ḡ(t, x)

and ∇Ḡ(t, x) were computed by using the function quad in Matlab when V is an interval
in R and the function dblquadwhen V is a box set in R2. The parameters used in algorithm
are specified as follows

γ = 0.5, ρ = 0.5, σ = 0.001, t̄ = s̄ = 0.5.

The starting points t0, s0 for all problems are set t0 = t̄ , s0 = s̄. The starting points u0, w0

are equal to 1.0e, 1.0e for Problems 1–12, where e is the vector of ones. For the solver
fseminf, we use all the default values.

In the test of Problems 1–12, the values of p are estimated by using the following adap-
tive strategy. First, we let p = 1 and use Algorithm 4.1 to solve a test problem. If this test
problem can be solved within 30 iterations, then we let p = 1 be the number of attainers at
the solution. Otherwise, we let p = 2 and use Algorithm 4.1 to solve this test problem again.
If this test problem can be solved within 30 iterations, then we let p = 2 be the number of
attainers. If this fails again, then we let p = 3 and then do the above procedure until we find
a number p (p ≤ n) which is the estimated number of attainers. It is interesting that we get
p = 1 for 10 of 12 test problems and p = 2 for other two test problems by the above method.

The test results for Problems 1–12 are summarized in Tables 1 and 2. In Table 1, �(yk)

is the value of the function �(y) in (3.8) at the k-th iteration. In Table 2, n.it represents
the number of the total iterations; cpu is the total cost time in seconds for solving the SIP
problem; f (xk) is the value of the objective function in the SIP problem at the final iteration;
and G(xk) is the value of the function G(x) of (2.2) at the final iteration.

The results reported in Tables 1 and 2 show that Algorithm 4.1 performs well for these test
problems. From Table 1, we can see that Algorithm 4.1 indeed has superlinear convergence
property. From Table 2, we can see that Algorithm 4.1 uses less CPU time than fseminf
for 7 test problems and fseminf uses less CPU time than Algorithm 4.1 for other 5 test

123

156 J Glob Optim (2010) 47:133–159

problems. Moreover, it appears from Table 2 that Algorithm 4.1 indeed can ensure the feasi-
bility of the test problems.

We also implemented Algorithm 4.1 for Problems 13–14 in Fortran 77 by using a Pen-
tium III 1133 MHz computer with 256 MB memory. The dimensions (N) of the two problems
are chosen by 20, 40, 60, 80, 100, 200, 400, 1000 and 2000. All calculation within the driving
programs, test problems and optimization code are carried out in double precision. In the test
of the two problems, the termination condition is ‖�(yk)‖ ≤ 10−5, the starting points u0,
w0 are set 0.5e and 0.5e, respectively, and other parameters are same to that in the test of
Problems 1–12.

The test results for Problems 13 and 14 are given in Tables 3 and 4, respectively. Problem
13 is dense, i.e. its Hessian of Lagrangian function is not sparse. Here, Algorithm 4.1 is
used for solving Problem 13, whose dimensions range from 20 to 200. Table 3 shows that
Algorithm 4.1 performs well for solving some medium dense SIP problems. Table 4 shows
that Algorithm 4.1 performs very well for solving Problem 14 with the different dimensions.
Specially, the iteration number almost has no increase when N ≥ 200.

The numerical tests reported in the paper are very preliminary. Further experience with
testing and with actual applications will be necessary and we leave it as our future research
topic. In addition, we notice that for problems 1–6, 8–9 and 11–12, when p ≥ 2, these test

Table 2 Test results for Algorithm 4.1 and fseminf

Problem Algorithm 4.1 fseminf

n.it cpu f (xk) G(xk) n.it cpu f (xk) G(xk)

1 7 0.05 2.2 0 7 0.17 2.1989 7.804e-8

2 9 0.17 5.3347 3.456e-13 30 0.50 5.3242 7.467e-5

3 10 0.13 0.1945 0 3 0.03 0.1945 0

4 19 0.16 1 6.357e-9 10 0.14 1 2.568e-3

5 9 0.33 0 0 7 0.06 0 0

6 20 0.28 97.1589 0 8 0.19 97.1589 2.010e-24

7 16 1.92 0.3820 2.054e-12 13 2.23 0.3820 1.221e-7

8 8 0.91 0 0 1 1.67 0 0

9 10 13.75 1 0 7 4.78 1 0

10 9 3.64 0 0 6 4.75 0 0

11 8 1.23 1.0191 0 5 2.78 1.0191 0

12 10 1.58 0.0885 0 2 1.88 0.0885 1.611e-10

Table 3 Test results of
Problem 13 N ITK CPU Ḡ(tk , xk) θ(yk) f (xk)

20 38 0.23 8.46e-8 7.53e-11 1.09

40 129 2.37 2.42e-9 8.71e-11 2.26

60 138 6.18 1.51e-7 6.33e-11 2.71

80 161 10.71 7.55e-9 4.65e-12 3.75

100 192 19.10 1.58e-8 4.41e-11 2.98

200 210 80.14 3.75e-9 1.80e-13 3.41

123

J Glob Optim (2010) 47:133–159 157

Table 4 Test results of
Problem 14 N ITK CPU Ḡ(tk , xk) θ(yk) f (xk)

60 6 0.03 2.03e-9 5.03e-9 0.02947

100 7 0.06 2.55e-12 1.96e-11 0.02941

200 9 0.18 1.62e-14 1.69e-13 0.02942

400 9 0.30 1.41e-10 7.15e-10 0.02942

1000 9 0.86 2.44e-9 7.05e-9 0.02941

2000 11 1.17 7.68e-11 1.13e-9 0.02941

problems can not be solved by Algorithm 4.1 within 30 iterations. For problems 7 and 10,
when p = 1, the two test problems can not be solved by Algorithm 4.1 within 30 iterations.
This means that it is important to choose a suitable number p when we use Algorithm 4.1
to solve the SIP problem. When the size of the SIP problem and the number p are large, the
above method to determine the number p may be expensive in computation. In addition, If
V in (1.1) is a nonpolyhedral index set, then our method cannot be used directly. As future
work, we will work on how to find a good way to determine a suitable number p in the KKT
system of the SIP problem. From Tables 3 and 4, we see that our algorithm is hopeful for SIP
problem with more higher dimension decision variable. It is hoped that an improved version
of Algorithm 4.1 may also be capable of handling high dimensional index sets.

7 Final remarks

In this paper we have presented a smoothing Newton-type algorithm for solving the KKT sys-
tem of the SIP problem. First, we reformulate the infinite constraints of the SIP problem to a
constraint by using an integral function. Then, the KKT system of the SIP problem is written as
a system of nonsmooth equations, and solved by a smoothing Newton-type method. Under
certain assumptions, we prove the global and local superlinear convergence properties of
this method. Compared with the existing methods such as discretization methods, exchange
methods and local reduction methods, our method only needs to solve a system of linear
equations at each iteration. Compared with the methods proposed in [14,26], our method
can ensure the feasibility of (1.1). As future work, one problem is to find a way to determine
a suitable number p in the KKT system of the SIP problem. Another problem is to find
conditions which ensure the quadratic convergence of our method.

Acknowledments We would like to thank the anonymous referees for their helpful comments and sugges-
tions which lead to a significantly improved version of this article.

References

1. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)
2. Coope, I.D., Watson, G.A.: A projected Lagrangian algorithm for semi-infinite programming. Math.

Prog. 32, 337–356 (1985)
3. Facchinei, F., Soares, J.: A new merit function for nonlinear complementarity problems and a related

algorithm. SIAM J. Optim. 7, 225–247 (1997)
4. Fang, S.C., Wu, S.Y.: An inexact approach to solving linear semi-infinite programming problems. Opti-

mization 28, 291–299 (1994)
5. Goberna, M.A., López, M.A.: Optimal value function in semi-infinite programming. J. Optim. Theory

Appl. 59, 261–279 (1988)

123

158 J Glob Optim (2010) 47:133–159

6. Goberna, M.A., López, M.A.: Semi-Infinite Programming: Recent Advances. Kluwer, Dordrecht (2001)
7. Gustafson, S.A.: On numerical analysis in semi-infinite programming. In: Hettich, R. (ed.) Semi-Infinite

Programming, Lecture Notes in Control and Information Science, vol 15, pp. 51–65. Springer, New
York (1979)

8. Gustafson, S.A.: A three-phase algorithm for semi-infinite programming. In: Fiacco, A.V., Kortanek,
K.O. (eds.) Semi-Infinite Programming and Applications, pp. 138–157. Springer, Berlin (1983)

9. Hettich, R., Kortanek, K.O.: Semi-infinite programming: theory, methods, and applications. SIAM
Review 35, 380–429 (1993)

10. Hettich, R., Zencke, P.: Numerische Methoden der Approximation und Semi-infinite Optimierung. Teub-
ner, Stuttgart (1982)

11. Ito, S., Lin, Y., Teo, K.L.: A dual parametrization method for convex semi-infinite programming. Ann.
Oper. Res. 98, 189–214 (2000)

12. Kanzow, C., Qi, H.D.: A QP-free constrained Newton-type method for variational inequality prob-
lems. Math. Prog. 85, 81–106 (1999)

13. Lai, H.C., Wu, S.Y.: On linear semi-infinite programming problems: an algorithm. Numer. Funct. Anal.
Optim. 13, 287–304 (1992)

14. Li, D.H., Qi, L., Tam, J., Wu, S.Y.: A smoothing Newton method for semi-infinite programming. J. Global
Optim. 30, 169–194 (2004)

15. Lin, C.J., Fang, S.C., Wu, S.Y.: A dual affine scaling based algorithm for solving linear semi-infinite pro-
gramming problems. In: Du, D.Z., Sun, J. (eds.) Advances in Optimization and Approximation, pp. 217–
233. Kluwer, London (1994)

16. Mifflin, R.: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control
Optim. 15, 957–972 (1977)

17. Moré, J.J., Sorensen, D.C.: Computing a trust region step. SIAM J. Sci. Stat. Comput. 4, 553–572 (1983)
18. Ni, Q., Ling, C., Qi, L., Teo, K.L.: A truncated projected Newton-type algorithm for large scale semi-

infinite programming. SIAM J. Optim. 16, 1137–1154 (2006)
19. Pang, J.S., Qi, L.: Nonsmooth equations: motivation and algorithms. SIAM J. Optim. 3, 443–465 (1993)
20. Polak, E., Tits, A.L.: A recursive quadratic programming algorithm for semi-infinite programming prob-

lems. Appl. Math. Optim. 8, 325–349 (1982)
21. Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper.

Res. 18, 227–244 (1993)
22. Qi, L., Ling, C., Tong, X.J., Zhou, G.: A smoothing projected Newton-type algorithm for semi-infinite

programming. Comput. Optim. Appl. 42, 1–30 (2009)
23. Qi, L., A. , Shapiro, Ling, C.: Differentiability and semismoothness properties of integral functions and

their applications. Math. Prog. 102, 223–248 (2005)
24. Qi, L., Sun, D., Zhou, G.: A new look at smoothing Newton methods for nonlinear complementarity

problems and box constrained variational inequalities. Math. Prog. 87, 1–35 (2000)
25. Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Prog. 58, 353–367 (1993)
26. Qi, L., Wu, S.Y., Zhou, G.: Semismooth Newton methods for solving semi-infinite programming prob-

lems. J. Global Optim. 27, 215–232 (2003)
27. Roleff, K.: A stable multiple exchange algorithm for linear SIP. In: Hettich, R. (ed.) Semi-Infinite Program-

ming, Lecture Notes in Control and Information Science, vol 15, pp. 83–96. Springer, New York (1979)
28. Rückmann, J.J., Shapiro, A.: Second order optimality conditions in generalized semi-infinite program-

ming. Set-Valued Anal. 9, 169–186 (2001)
29. Shapiro, A.: First and second order optimality conditions and perturbation analysis of semi-infinite pro-

gramming problems. In: Reemtsen, R., Rükmann, J. (eds.) Semi-Infinite Programming, pp. 103–133.
Kluwer, Boston (1998)

30. Stein, O., Tezel, A.: The semismooth approach for semi-infinite programming under the reduction
Ansatz. J. Global Optim. 41, 245–266 (2008)

31. Still, G.: Discretization in semi-infinite programming: the rate of convergence. Math. Prog. 91,
53–69 (2001)

32. Sheu, R.L., Wu, S.Y., Fang, S.C.: A primal-dual infeasible-interior-point algorithm for linear semi-infinite
programming. Comput. Math. Applic. 29, 7–18 (1995)

33. Tanaka, Y., Fukushima, M., Ibaraki, T.: A globally convergent SQP method for semi-infinite nonlinear
optimization. J. Comp. Appl. Math. 23, 141–153 (1988)

34. Teo, K.L., Rehbock, V., Jennings, L.S.: A new computational algorithm for functional inequality con-
strained optimization problems. Automatica 29, 789–792 (1993)

35. Teo, K.L., Yang, X.Q., Jennings, L.S.: Computational discretization algorithms for functional inequality
constrained optimization. Ann. Oper. Res. 98, 215–234 (2000)

36. Todd, M.J.: Interior-point algorithms for semi-infinite programming. Math. Prog. 65, 217–245 (1994)

123

J Glob Optim (2010) 47:133–159 159

37. Watson, G.A.: A multiple exchange algorithm for multivariate Chebyshev approximation. SIAM J. Numer.
Anal. 12, 46–52 (1975)

38. Watson, G.A.: Numerical experiments with globally convergent methods for semi-infinite programming
problems. In: Fiacco, A.V., Kortanek, K.O. (eds.) Semi-Infinite Programming and Applications, pp. 193–
205. Springer, Berlin (1983)

39. Wu, S.Y., Li, D.H., Qi, L., Zhou, G.: An iterative method for solving KKT system of the semi-infinite
programming. Optim. Methods Softw. 20, 629–643 (2005)

123

	A new smoothing Newton-type algorithm for semi-infinite programming
	Abstract
	1 Introduction
	2 A semismooth equation reformulation
	3 Smoothing functions
	4 A smoothing Newton-type algorithm
	5 Convergence analysis
	6 Preliminary numerical results
	7 Final remarks
	Acknowledments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

